首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4086篇
  免费   567篇
  国内免费   1279篇
化学   4062篇
晶体学   359篇
力学   159篇
综合类   54篇
数学   111篇
物理学   1187篇
  2024年   7篇
  2023年   70篇
  2022年   140篇
  2021年   239篇
  2020年   240篇
  2019年   150篇
  2018年   145篇
  2017年   198篇
  2016年   219篇
  2015年   194篇
  2014年   219篇
  2013年   442篇
  2012年   297篇
  2011年   345篇
  2010年   285篇
  2009年   302篇
  2008年   323篇
  2007年   332篇
  2006年   332篇
  2005年   275篇
  2004年   218篇
  2003年   187篇
  2002年   173篇
  2001年   83篇
  2000年   89篇
  1999年   64篇
  1998年   68篇
  1997年   40篇
  1996年   43篇
  1995年   32篇
  1994年   40篇
  1993年   27篇
  1992年   26篇
  1991年   18篇
  1990年   12篇
  1989年   3篇
  1988年   9篇
  1987年   3篇
  1986年   2篇
  1985年   9篇
  1984年   7篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1959年   1篇
排序方式: 共有5932条查询结果,搜索用时 15 毫秒
21.
Solution-based, anionic doping represents a convenient strategy with which to improve upon the conductivity of candidate anode materials such as Li4Ti5O12 (LTO). As such, novel synthetic hydrothermally-inspired protocols have primarily been devised herein, aimed at the large-scale production of unique halogen-doped, micron-scale, three-dimensional, hierarchical LTO flower-like motifs. Although fluorine (F) doping has been explored, the use of chlorine (Cl) dopants is the primary focus here. Several experimental variables, such as dopant amount, lithium hydroxide concentration, and titanium butoxide purity, were probed and perfected. Furthermore, the Cl doping process did not damage the intrinsic LTO morphology. The analysis, based on interpreting a compilation of SEM, XRD, XPS, and TEM-EDS results, was used to determine an optimized dopant concentration of Cl. Electrochemical tests demonstrated an increased capacity via cycling of 12 % for a Cl-doped sample as compared with pristine LTO. Moreover, the Cl-doped LTO sample described in this study exhibited the highest discharge capacity yet reported at an observed rate of 2C for this material at 143mAh g−1. Overall, these data suggest that the Cl dopant likely enhances not only the ion transport capabilities, but also the overall electrical conductivity of our as-prepared structures. To help explain these favorable findings, theoretical DFT calculations were used to postulate that the electronic conductivity and Li diffusion were likely improved by the presence of increased Ti3+ ion concentration coupled with widening of the Li migration channel.  相似文献   
22.
《Mendeleev Communications》2020,30(5):654-656
  1. Download : Download high-res image (93KB)
  2. Download : Download full-size image
  相似文献   
23.
In this paper, the behaviour of the industrial applied Ti/Zr conversion coating (CC) pretreatment on rolled automotive aluminium samples (AA5182) is analysed. Due to its nanometre lateral and depth resolution, Auger electron spectroscopy (AES) is used to analyse the CC distribution at surface cathodic intermetallic particles. As a result of its high surface sensitivity, the AES technique is very susceptible to differences in the top contamination layer thickness. It is demonstrated that AES point measurements performed on aluminium model samples coated with 1.5 and 3 nm of Ti (oxide) layer cannot differentiate the two-layer thicknesses if a difference in the top contamination thickness is not taken into account. A data analysis methodology is introduced, based on the ratio of normalized peak areas (enrichment ratios), to eliminate the effect of the contamination layer thickness. The experimental validation of the methodology is performed on the model samples, demonstrating errors of 2% on the enrichment ratios on similar samples with different contamination layer thicknesses, while the conventional spectra quantification results in errors of 49%. The methodology is also theoretically substantiated within certain constraints. By the use of the AES methodology, an enriched Ti and Zr deposition is confirmed at the cathodic intermetallic particles at the surface of the industrial no-rinse CC sprayed automotive aluminium sheet samples.  相似文献   
24.
A good photocatalyst with high efficiency can be synthesized easily using eco-friendly materials and processes. Our synthesized samples exhibit all of the aforementioned features. In this work, manganese co-doped ZnO at different weight percentages (3, 6, 9, and 15 wt.%) with and without 1.5 wt.% aluminum was synthesized by hydrothermal method, and their photocatalytic activity in aqueous solutions of methyl orange (MO) was investigated under visible light. The structural and optical properties of the samples were characterized using X-ray powder diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and diffuse reflectance spectroscopy. In this work, Mn2+ ions in the 9%Mn/ZnO sample and Mn2+, Al3+ ions in the (9%Mn, 1.5%Al)/ZnO sample calcined at 800 °C were replaced instead with some Zn2+ ions in hexagonal wurtzite structures of ZnO. These structures were found next to each other in the form of a hexagonal shape that created 3D-hexagonal-like ZnO nanostructures. Finally, nanoparticles (NPs) and nano hexagonal-like ZnO nanostructures were, respectively, dispersed on the surface of 3D-hexagonal-like structure of 9%Mn/ZnO and (9%Mn, 1.5%Al)/ZnO. Diffuse reflectance spectroscopy analysis showed that the (9%Mn, 1.5%Al)/ZnO sample had more light absorption than 9%Mn/ZnO. However, contrary to our expectations, the 9%Mn/ZnO sample had better decolorization efficiency (94%) after 60 min under visible light, which could be attributed to a significant increase in the level of recombination by the aluminum ions.  相似文献   
25.
A new copper (II) coordination complex formulated as [Cu (dipic)(phen)(2-MePy)]. 2H2O ( 1 ) where phen = 1, 10-phenanthroline, dipic2− = pyridine-2,6-dicarboxylato and 2-MePy = 2-methyl pyrrole was synthesized through a simple and environment-friendly reaction under ultrasound irradiation. Also, complex 1 was synthesized by hydrothermal process at 120 °C for 3 days. The corresponding structure of complex 1 was characterized by elemental analysis, atomic absorption spectroscopy (AAS), inductively coupled plasma (ICP), conductivity measurement, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, ultraviolet–visible spectroscopy (UV–Vis), thermal gravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and fluorescence. The crystal structure of the hydrothermally synthesized complex was characterized by single crystal X-ray diffraction (SC-XRD(, which revealed a triclinic structure. In the remainder of this study, the Cu2O nanoparticles have been prepared via thermal decomposition of hydrothermal and ultrasound complexes and characterized by ICP, FT-IR, powder X-ray diffraction (XRD), SEM and N2 adsorption/desorption. Adsorption and visible-light-driven photocatalytic capabilities of two synthetic Cu2O were investigated in the removal of MB from water. The result showed that the synthesized catalysts have good catalytic activity and the photocatalytic degradation is more effective in dye removal of MB compared with the adsorption.  相似文献   
26.
27.
Polyetheretherketone (PEEK) is a thermoplastic material with outstanding properties and high potential for biomedical applications, including hermetic encapsulation of active implantable devices. Different biomedical grade PEEK films with initial degree of crystallinity ranging from 8% to 32% (with or without mineral filling) were inspected. PEEK surfaces were treated with nitrogen RF plasma and the effects on materials crystallinity and self‐bonding were evaluated. In particular, the relationship between auto‐adhesive properties and crystalline content of PEEK before and after plasma treatment was examined. PEEK samples showed different bonding strength depending on their degree of crystallinity, with higher self‐bonding performance of mineral‐filled semi‐crystalline films. XRD did not show any modification of the PEEK microstructure as a result of plasma treatment, excluding a significant influence of crystallinity on the self‐bonding mechanisms. Nevertheless, plasma surface treatment successfully improved the self‐bonding strength of all the PEEK films tested, with larger increase in the case of semi‐crystalline unfilled materials. This could be interpreted to the increase in chain mobility that led to interfacial interpenetration of the amorphous phase.  相似文献   
28.
Molybdenum trioxide (MoO3) represented an excellent photocatalytic performance with many applications, including degradation of organic contaminants and splitting of water. This paper presented a new route to synthesize MoO3 nanobelts with high aspect ratios and crystallinity by a hydrothermal technique. This work showed that the as-synthesized nanobelts exhibited strong photocatalytic activity to degrade an organic dye of Rhodamine B (RhB) in aqueous solution under the exposure of the light source in the near infrared wavelength range, significantly improving the photocatalytic activity of the nanobelts. The results also showed that for a small concentration of RhB at 7.5 mg/L a complete photodegradation (for a given MoO3 nanobelts quantity of 0.1 g) can be reached after exposing for 60 min. For all concentrations of the RhB solution, the photodegradation exhibited an exponential dependence on the exposure time followed by a sudden shutdown, but no complete photodegradation can be reached. Also, the residual quantity of RhB in solution after the photocatalytic reaction was determined by the initial RhB concentration. The photocatalytic degradation can be interpreted by the pseudo–first-order equation for the absorption of liquid/solid based on solid capacity; thus, photocatalytic degradation can be attributed to the interaction between the photoexcited electrons in the substrate and the antibonding orbital of the RhB in solution. The sudden shutdown was due to the inability of the photoexcited electrons in the substrate hopping to the antibonding orbital of RhB in the presence of the RhB intermediate products from the degraded RhB. In addition, this work showed that the photocatalytic reaction can be recovered after a thermal treatment of postreacted MoO3 nanobelts, enhancing the utilization efficiency of the catalysis.  相似文献   
29.
水火联合调度问题是电力系统中一类复杂的优化问题。合理安排调度周期内的水火电出力,确定一个最优发电计划,可以带来巨大的经济效益。在实际系统中,汽轮机调汽阀开启时出现的拔丝现象会使机组耗量特性产生阀点效应。忽略阀点效应,在一定程度上降低求解的精度。本文考虑带阀点效应的水火联合调度问题。该问题非凸非光滑,且带有非线性约束,直接使用确定性全局优化方法求解是相当困难的。本文使用高效的半定规划求解此问题。首先用耗量特性函数的初始周期代替其余有限的周期,并对其进行二次拉格朗日插值拟合。再通过引进0-1变量,得到整个耗量特性函数的近似,进而把问题松弛为半定规划模型。最后,采用凸规划应用软件包CVX求解一个仿真算例,得到一个近似全局最优解。  相似文献   
30.
Two new coordination complexes based on benzimidazole dicarboxylic acid, Zn(Hbidc)?H2O ( 1 ) and Cd(Hbidc)(H2O) ( 2 ), have been synthesized under hydrothermal conditions. The complexes were characterized using elemental analysis, infrared and UV–visible spectroscopies, powder X‐ray diffraction, thermogravimetry and single‐crystal X‐ray diffraction. Structural analyses showed that the crystal structures of 1 and 2 are different, due to the various modes of linking of the benzimidazole dicarboxylic acid. Complex 1 has a two‐dimensional network structure and 2 has a three‐dimensional network structure. In addition, we studied the performance of the fluorescence response of two complexes. Results showed that the complexes can be used as chemical sensors for multifunctional testing, such as for UO22+, xanthine and Fe3+ ions. Even if the concentration is very low, they could also be detected, showing that coordination complexes 1 and 2 have very high fluorescence sensitivity. The detection limit for UO22+ is 5.42 nM ( 1 ) and 0.02 nM ( 2 ), that for xanthine is 1.37 nM ( 1 ) and 0.28 nM ( 2 ), and that for Fe3+ ions is 0.76 nM ( 1 ) and 0.62 nM ( 2 ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号